APT attack detection based on flow network analysis techniques using deep learning

Abstract

Advanced Persistent Threat (APT) attacks are a form of malicious, intentionally and clearly targeted attack. This attack technique is growing in both the number of recorded attacks and the extent of its dangers to organizations, businesses and governments. Therefore, the task of detecting and warning APT attacks in the real system is very necessary today. One of the most effective approaches to APT attack detection is to apply machine learning or deep learning to analyze network traffic. There have been a number of studies and recommendations to analyze network traffic into network flows and then combine with some classification or clustering methods to look for signs of APT attacks. In particular, recent studies often apply machine learning algorithms to spot the present of APT attacks based on network flow. In this paper, a new method based on deep learning to detect APT attacks using network flow is proposed. Accordingly, in our research, network traffic is analyzed into IP-based network flows, then the IP information is reconstructed from flow, and finally deep learning models are used to extract features for detecting APT attack IPs from other IPs. Additionally, a combined deep learning model using Bidirectional Long Short-Term Memory (BiLSTM) and Graph Convolutional Networks (GCN) is introduced. The new detection model is evaluated and compared with some traditional machine learning models, i.e. Multi-layer perceptron (MLP) and single GCN models, in the experiments. Experimental results show that BiLSTM-GCN model has the best performance in all evaluation scores. This not only shows that deep learning application on flow network analysis to detect APT attacks is a good decision but also suggests a new direction for network intrusion detection techniques based on deep learning.

Publication
In Journal of Intelligent & Fuzzy Systems
Mai Hoang Dao
Mai Hoang Dao
NLP Research Intern

My research interests include spoken language understanding in low-resource languages and multilingual NLP.

Related